If it's not what You are looking for type in the equation solver your own equation and let us solve it.
64n^2-16=0
a = 64; b = 0; c = -16;
Δ = b2-4ac
Δ = 02-4·64·(-16)
Δ = 4096
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{4096}=64$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-64}{2*64}=\frac{-64}{128} =-1/2 $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+64}{2*64}=\frac{64}{128} =1/2 $
| 14-2x=5+3(-7x+3) | | 6m2=-6m-2 | | Y=350-25(x) | | |3x-9|=4 | | 3x^2+5x+15=(4x+3)(5x+3) | | 13⋅d=6 | | 13t+27=2t+49 | | 42=7x−14 | | x+5/6+2=10 | | d−6=8 | | 18.62+z/2.01=1.2 | | (1/2x)-6=10 | | 5m2=14-9m | | f=10+19. | | 5p-11=64 | | 4(3y-5)=-2(46+3y) | | 1x+17x=-54 | | (x+8)x4=21/4 | | x+125=23−75x | | -6(9x+5)-3x+4x=104+x | | (x+8)x4=21 | | 8(x+3)=-96 | | 2/7x=6/11 | | -2x+3-x=3x-15 | | X2+17x-30=0 | | 10x^2-92x-70=0 | | 0.9=0.15(y+9) | | 9z−7z=16 | | -0.84(m+4)=-4.2 | | -7.2=1.2y-3.6 | | 5x2x=21 | | t-5=22 |